Simulating carbon capture by enhanced weathering with croplands: an overview of key processes highlighting areas of future model development
نویسندگان
چکیده
Enhanced weathering (EW) aims to amplify a natural sink for CO2 by incorporating powdered silicate rock with high reactive surface area into agricultural soils. The goal is to achieve rapid dissolution of minerals and release of alkalinity with accompanying dissolution of CO2 into soils and drainage waters. EW could counteract phosphorus limitation and greenhouse gas (GHG) emissions in tropical soils, and soil acidification, a common agricultural problem studied with numerical process models over several decades. Here, we review the processes leading to soil acidification in croplands and how the soil weathering CO2 sink is represented in models. Mathematical models capturing the dominant processes and human interventions governing cropland soil chemistry and GHG emissions neglect weathering, while most weathering models neglect agricultural processes. We discuss current approaches to modelling EW and highlight several classes of model having the potential to simulate EW in croplands. Finally, we argue for further integration of process knowledge in mathematical models to capture feedbacks affecting both longer-term CO2 consumption and crop growth and yields.
منابع مشابه
Enhanced chemical weathering and organic carbon burial as environmental recovery factors of the OAE2; a case study in the Koppeh-Dagh Basin (NE Iran)
A late Cenomanian-early Turonian interval (Hamam-ghaleh section) adjusted with the transition of Aitamir and Abderaz formations has been investigated in the east of Koppeh-Dagh Basin to examine environmental perturbations related to the oceanic anoxic event 2. The dark shale of the upper Aitamir Formation indicate higher organic matter concentrations especially in the two intervals at the end o...
متن کاملCarbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores
CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...
متن کاملEngineering of Membrane Gas Separation Processes: State of The Art and Prospects
Membrane processes are today one of the key technologies for industrial gas separations and show growing interest for future use in sustainable production systems. Besides materials development, dedicated engineering methods are of major importance for the rigorous and most efficient design of membrane units and systems. Starting from approaches based on simplified hypotheses developed in the 5...
متن کاملSimulation of the catchments hydrological processes in arid, semi-arid and semi-humid areas
Hydrological processes and their spatial distribution directly are relevant to climate, topography, geology, and land use in the watershed. Therefore, use of a model whit integrity and high performance for simulating the process in deferent watersheds is very important. In this study was assessment performance of semi-distributed SWAT model in simulating hydrology processes in three watersheds ...
متن کاملAn Overview of Fabrication Methods and Applications of Carbon Nanotube Membrane in Environmental Engineering as Hydraulic Microstructures
The main purpose of this article is to study fabrication methods and applications of aligned carbon nanotube (CNT) membranes as a hydraulic microstructure in treatment processes. This paper emphasizes the use of CNTs as membrane in separation processes like water and wastewater treatment because of their exclusive advantages. Their most important characteristics are high mechanical strength aga...
متن کامل